Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes.

نویسندگان

  • José Braga
  • Joana M P Desterro
  • Maria Carmo-Fonseca
چکیده

Fluorescence recovery after photobleaching (FRAP) is a widely used tool for estimating mobility parameters of fluorescently tagged molecules in cells. Despite the widespread use of confocal laser scanning microscopes (CLSMs) to perform photobleaching experiments, quantitative data analysis has been limited by lack of appropriate practical models. Here, we present a new approximate FRAP model for use on any standard CLSM. The main novelty of the method is that it takes into account diffusion of highly mobile molecules during the bleach phase. In fact, we show that by the time the first postbleach image is acquired in a CLSM a significant fluorescence recovery of fast-moving molecules has already taken place. The model was tested by generating simulated FRAP recovery curves for a wide range of diffusion coefficients and immobile fractions. The method was further validated by an experimental determination of the diffusion coefficient of fluorescent dextrans and green fluorescent protein. The new FRAP method was used to compare the mobility rates of fluorescent dextrans of 20, 40, 70, and 500 kDa in aqueous solution and in the nucleus of living HeLa cells. Diffusion coefficients were lower in the nucleoplasm, particularly for higher molecular weight dextrans. This is most likely caused by a sterical hindrance effect imposed by nuclear components. Decreasing the temperature from 37 to 22 degrees C reduces the dextran diffusion rates by approximately 30% in aqueous solution but has little effect on mobility in the nucleoplasm. This suggests that spatial constraints to diffusion of dextrans inside the nucleus are insensitive to temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope.

Confocal scanning laser microscopes (CSLMs) are equipped with the feature to photobleach user-defined regions. This makes them a handy tool to perform fluorescence recovery after photobleaching (FRAP) measurements. To allow quantification of such FRAP experiments, a three-dimensional model has been developed that describes the fluorescence recovery process for a disk-shaped geometry that is pho...

متن کامل

Quantitative interpretation of binding reactions of rapidly diffusing species using fluorescence recovery after photobleaching.

Fluorescence recovery after photobleaching (FRAP) measurements offer an important tool for analyzing diffusion and binding processes. Confocal scanning laser microscopes that are used in FRAP experiments bleach regions with a radially Gaussian distributed profile. Previous attempts to derive analytical expressions in the case of processes governed by fast diffusion have overlooked the character...

متن کامل

Protein Interaction and Transport Maps of Live Cell Nuclei Using Fluorescence Correlation Spectroscopy in a Single Plane Illumination Microscope

Typical microscopic methods used for characterizing intracellular protein mobility are, e.g., fluorescence photobleaching recovery (FRAP) and fluorescence correlation spectroscopy (FCS). Of these, FRAP can image protein mobility in entire two-dimensional sections of live cells, but is typically limited to the time resolution of confocal image series, some frames per second. FCS, on the other ha...

متن کامل

Mobility of Adsorbed Proteins Studied by Fluorescence Recovery after Photobleaching

The mobility of proteins adsorbed on a solid substrate and on a lipid monolayer was measured by fluorescence recovery after photobleaching. Both a conventional fluorescence microscope with a chargecoupled device camera and a laser scanning confocal microscope were used. For proteins adsorbed on a solid substrate, the bleached area never recovered fully, while for proteins adsorbed at liquid int...

متن کامل

Analysis of the diffusion of Ras2 in Saccharomyces cerevisiae using fluorescence recovery after photobleaching.

Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane-localized fluorophore with the cytosol during fluorescence recovery after photobleaching (FRA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 10  شماره 

صفحات  -

تاریخ انتشار 2004